Supersymmetric Single Top Production with a $U(1)_R$ Symmetry

Robert Knegjens

Supervisor: Prof. Dr. Eric Laenen

Universiteit Utrecht

Rob Knegjens (ITF, Utrecht)

Outline

```
Supersymmetry (SUSY)
```

Standard Model with SUSY

Continuous R Symmetry

Numerical Methods

Phenomenology

Rob Knegjens (ITF, Utrecht)

Supersymmetric Single Top Production

October 23, 2009 2 / 46

Supersymmetry (SUSY)

Supersymmetry (SUSY)

Rob Knegjens (ITF, Utrecht)

Supersymmetric Single Top Production

October 23, 2009 3 / 46

Motivation for SUSY

Supersymmetry (SUSY):

 $Q|{
m Boson}
angle = |{
m Fermion}
angle \ , \ \ Q|{
m Fermion}
angle = |{
m Boson}
angle$

SUSY + Standard Model:

Solves the fine-tuning problem

$$m_{H}^{2} = m_{\text{tree}}^{2} - \frac{\lambda_{t}^{2}}{8\pi^{2}}\Lambda_{\text{UV}}^{2} + \ldots \sim (200\text{GeV})^{2}$$

- Can unify gauge coupling constants of the SM (e.g MSSM)
- Broken SUSY theory with R symmetry gives a stable dark matter candidate

Rob Knegjens (ITF, Utrecht)

Spacetime Symmetries

- ► The Poincaré group:
 - Translations generated by P_{μ}
 - Rotations generated by J_i
 - Boosts generated by K_i

$$M_{ij} = \epsilon_{ijk} J_k$$
 and $M_{i0} = K_i$,

► The Poincaré Lie algebra:

$$\begin{array}{lll} \left[P_{\mu}, P_{\nu} \right] &=& 0 \\ \left[M_{\mu\nu}, P_{\lambda} \right] &=& i(\eta_{\nu\lambda}P_{\mu} - \eta_{\mu\lambda}P_{\nu}) \\ \left[M_{\mu\nu}, M_{\rho\sigma} \right] &=& -i(\eta_{\mu\rho}M_{\nu\sigma} - \eta_{\mu\sigma}M_{\nu\rho} - \eta_{\nu\rho}M_{\mu\sigma} + \eta_{\nu\sigma}M_{\mu\rho}) \end{array}$$

Rob Knegjens (ITF, Utrecht)

Additional Spacetime Symmetries?

NO-GO Theorem: Coleman and Mandula (1967)

The most general Lie algebra for symmetries of an S-matrix can have only Poincare group generators along with Lorentz scalar generators of a compact Lie group.

Bypass theorem by going to graded (super) Lie algebras

$$\{Q, Q'\} = X, \ [X, X'] = X'', \ [Q, X] = Q'$$

- X: original commuting Poincaré generators $(P_{\mu}, M_{\mu\nu})$ Q: new anti-commuting generators
- ► Super-Poincaré algebra (N=1), Q Majorana fermions:

$$\{Q, \bar{Q}\} = 2\gamma^{\mu}P_{\mu}$$
, $[M_{\mu\nu}, Q] = -\frac{1}{2}\sigma_{\mu\nu}Q$, $[P_{\mu}, Q] = 0$

Rob Knegjens (ITF, Utrecht)

Superfields

Define a generic **superfield** using an expansion in anti-commuting coordinates θ_a

$$\{ heta_a, heta_b\}=0$$
 , $\{ heta_a,\psi_b\}=0$

 $\hat{\Phi}(x,\theta) = \mathcal{S}(x) + \bar{\theta}\psi(x) + (\bar{\theta}\gamma_{\mu}\theta)V^{\mu}(x) + (\bar{\theta}\theta)\bar{\theta}\lambda(x) + \dots \{\mathcal{F},\mathcal{D}\}$

► SUSY transformation: $\hat{\Phi}'(x,\theta) = e^{i\bar{\alpha}Q} \hat{\Phi}(x,\theta) e^{-i\bar{\alpha}Q}$

$$\delta S = -i\sqrt{2}\bar{\alpha}\psi_{L}$$

$$\delta \psi_{L} = -\sqrt{2}\mathcal{F}\alpha_{L} + \sqrt{2}\partial S\alpha_{R}$$

$$\delta \mathcal{F} = i\sqrt{2}\bar{\alpha}\partial_{\mu}(\gamma^{\mu}\psi_{L})$$

$$\delta(\dots) \dots \dots$$

▶ Irreducible representations are chiral superfield $\hat{S} \equiv \{S, \psi_L, \mathcal{F}\}$ and vector superfield $\hat{V} \equiv \{V^{\mu}, \lambda, \mathcal{D}\} = \hat{V}^{\dagger}$

Rob Knegjens (ITF, Utrecht)

Building a SUSY Lagrangian

Build from combination of superfields

$$\hat{\Phi}\hat{\Phi}'=\hat{\Phi}'',\quad \hat{\mathcal{S}}\hat{\mathcal{S}}'=\hat{\mathcal{S}}'',\quad \hat{\mathcal{S}}^{\dagger}\hat{\mathcal{S}}=\hat{\Phi}$$

Action must be SUSY invariant

$$\delta S = \int d^4 x \; \delta \mathcal{L} = 0 \quad \Rightarrow \quad \left| egin{matrix} \delta \mathcal{L} = 0 \ \delta \mathcal{L} = \partial_\mu (\ldots) \end{aligned}
ight|$$

• $\delta \hat{S} \neq 0$ but $\delta \mathcal{F} = \mathscr{A}(\dots)$

Superpotential :
$$\hat{f}(\hat{S}) \rightarrow \hat{f}(\hat{S}) \Big|_{\mathcal{F}\text{-term}} \in \mathcal{L}$$

• Similarly,
$$\delta \hat{\Phi} \neq 0$$
 but $\delta \mathcal{D} = \partial_{\mu}(\ldots) \Rightarrow \mathcal{K}(\hat{\Phi}) \Big|_{\mathcal{D}\text{-term}} \in \mathcal{L}$

Rob Knegjens (ITF, Utrecht)

A Master SUSY Lagrangian

$$\begin{aligned} \mathcal{L} &= \sum_{i} (D_{\mu} \mathcal{S}_{i})^{\dagger} (D^{\mu} \mathcal{S}_{i}) + \frac{i}{2} \sum_{i} \bar{\psi}_{i} \mathcal{D} \psi_{i} + \sum_{\alpha} \left[\frac{i}{2} \bar{\lambda}_{\alpha} (\mathcal{D} \lambda)_{\alpha} - \frac{1}{4} \mathcal{F}_{\mu\nu\alpha} \mathcal{F}_{\alpha}^{\mu\nu} \right] \\ &- \sqrt{2} \sum_{i,\alpha} \left(\mathcal{S}_{i}^{\dagger} g_{\alpha} t_{\alpha} \bar{\lambda}_{\alpha} \psi_{Li} + \text{h.c.} \right) \\ &- \frac{1}{2} \sum_{\alpha} \left[\sum_{i} \mathcal{S}_{i}^{\dagger} g_{\alpha} t_{\alpha} \mathcal{S}_{i} + \xi_{\alpha} \right]^{2} - \sum_{i} \left| \frac{\partial \hat{f}(\hat{\mathcal{S}})}{\partial \hat{\mathcal{S}}_{i}} \right|_{\hat{\mathcal{S}}=\mathcal{S}}^{2} \\ &- \frac{1}{2} \sum_{i,j} \bar{\psi}_{i} \left[\left(\frac{\partial^{2} \hat{f}(\hat{\mathcal{S}})}{\partial \hat{\mathcal{S}}_{i} \partial \hat{\mathcal{S}}_{j}} \right)_{\hat{\mathcal{S}}=\mathcal{S}} \mathcal{P}_{L} + \left(\frac{\partial^{2} \hat{f}(\hat{\mathcal{S}})}{\partial \hat{\mathcal{S}}_{i} \partial \hat{\mathcal{S}}_{j}} \right)_{\hat{\mathcal{S}}=\mathcal{S}}^{\dagger} \mathcal{P}_{R} \right] \psi_{j} \end{aligned}$$

Rob Knegjens (ITF, Utrecht)

Standard Model with SUSY

Standard Model with SUSY

Rob Knegjens (ITF, Utrecht)

Supersymmetric Single Top Production

October 23, 2009 10 / 46

Minimal Supersymmetric Standard Model

Keep SU(3)_c × SU(2)_L × U(1)_Y. Promote SM gauge fields to vector superfields

e.g
$$B_{\mu} \rightarrow \hat{B} \ni (B_{\mu}, \lambda_0)$$

Promote SM fermion fields to chiral superfields

e.g
$$\begin{pmatrix} \nu_L \\ e_L \end{pmatrix} \rightarrow \begin{pmatrix} \hat{\nu} \\ \hat{e} \end{pmatrix} \equiv \hat{L}_e$$
 where $\hat{e} \ni (\tilde{e}_L, \psi_{eL})$ etc.

• Higgs potential must enter via superpotential $\hat{f}(\hat{S})$

$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \to \hat{H}_u = \begin{pmatrix} \hat{h}_u^+ \\ \hat{h}_u^0 \end{pmatrix} \quad \text{but} \quad \hat{H}_u^\dagger \not \in \hat{f}(\hat{\mathcal{S}}) \Rightarrow \text{ add } \hat{H}_d$$

Minimal superpotential (with R-parity):

$$\hat{f}(\hat{S}) = \mu \hat{H}_u \hat{H}_d + \mathbf{f}_u \epsilon \underbrace{\hat{Q}}_{\frac{1}{3}} \underbrace{\hat{H}_u}_{1} \underbrace{\hat{U}}_{-\frac{4}{3}} + \mathbf{f}_d \underbrace{\hat{Q}}_{\frac{1}{3}} \underbrace{\hat{H}_d}_{-1} \underbrace{\hat{D}}_{\frac{2}{3}} + \mathbf{f}_e \hat{L} \hat{H}_d \hat{E}$$

Rob Knegjens (ITF, Utrecht)

MSSM Particles

SM	Particles	Superpartners		
Fermions		Scalar Fermions		
Quarks:	u, c, t, d, s, b	Squarks:	ũ, č, ť, ď, š, Ď	
Leptons:	e, μ , $ au$, $ u_{e}$, $ u_{\mu}$, $ u_{ au}$	Sleptons:	$ ilde{e}$, $ ilde{\mu}$, $ ilde{ au}$, $ ilde{ u_{e}}$, $ ilde{ u_{\mu}}$, $ ilde{ u_{ au}}$	
Gauge Bosons		Gauginos		
Photon:	A_{μ}	Photino:	$\sin \theta_w \lambda_3 + \cos \theta_w \lambda_0$	
W,Z Bosons:	$W^{\pm}{}_{\mu}$	W-ino:	$\frac{1}{\sqrt{2}}(\lambda_1 \mp i\lambda_2)$	
	Z_{μ}	Z-ino	$-\cos\theta_w\lambda_3 + \sin\theta_w\lambda_0$	
Gluon:	G_{μ}	Gluino:	ĝ	
Higgs Bosons		Higgsinos		
h_u^+ h	$\stackrel{0}{_{u}}$ $\begin{pmatrix} h_d^- & h_d^0 \end{pmatrix}$	$ ilde{h}^+_u ilde{h}^0_u ilde{h}^d ilde{h}^0_d$		

Rob Knegjens (ITF, Utrecht)

Breaking of the MSSM

• $[Q, P_{\mu}] = 0 \Rightarrow$ SUSY states have equal mass

$$Q(P^{2}\psi) = Q(m_{\psi}^{2}\psi) \implies P^{2}(Q\psi) = m_{\psi}^{2}(Q\psi)$$
$$\implies \text{SUSY must be broken!}$$

Soft breaking protects scalar masses

$$\begin{split} \mathcal{L}_{\text{soft}} &= \left[\tilde{\boldsymbol{L}}_{i}^{\dagger} \mathbf{m}_{Lij}^{2} \tilde{\boldsymbol{L}}_{j} + \ldots + m_{H_{u}}^{2} |\boldsymbol{H}_{u}|^{2} + \ldots \right] \\ &- \frac{1}{2} \left[M_{1} \bar{\lambda_{0}} \lambda_{0} + \ldots \right] + \left[(\mathbf{a}_{\mathbf{e}})_{ij} \epsilon_{ab} \tilde{\boldsymbol{L}}_{i} \boldsymbol{H}_{d}^{*} \tilde{\mathbf{e}}_{Rj}^{\dagger} + \ldots \right] \\ &+ \left[(\mathbf{c}_{\mathbf{e}})_{ij} \epsilon_{ab} \tilde{\boldsymbol{L}}_{i} \boldsymbol{H}_{d}^{*} \tilde{\mathbf{e}}_{Rj}^{\dagger} + \ldots \right] + \left[b \boldsymbol{H}_{u} \boldsymbol{H}_{d} + h.c \right] \end{split}$$

MSSM with all soft breaking terms: 178 parameters!!

Rob Knegjens (ITF, Utrecht)

Continuous R Symmetry

R Symmetry

Rob Knegjens (ITF, Utrecht)

Supersymmetric Single Top Production

October 23, 2009 14 / 46

Baryon/Lepton Number Conservation

► SM + SUSY doesn't naturally conserve B/L numbers:

$$\begin{split} \epsilon \, \hat{L} \hat{Q} \hat{D}^{\mathsf{c}} + \epsilon \, \hat{L} \hat{L} \hat{E}^{\mathsf{c}} + \epsilon \, \hat{L} \hat{H}_{u} \in \hat{f}_{\Delta L=1} \\ \hat{U}^{\mathsf{c}} \hat{U}^{\mathsf{c}} \hat{D}^{\mathsf{c}} \in \hat{f}_{\Delta B=1} \end{split}$$

> This gives unobserved phenomena such as rapid proton decay

$$P \rightarrow \pi^0 + e^+$$

• MSSM introduces a \mathbb{Z}_2 symmetry: **R** parity

R[SM particles] = 1 R[Superpartners] = -1

Rob Knegjens (ITF, Utrecht)

Supersymmetric Single Top Production

October 23, 2009 15 / 46

A Continuous R Symmetry

$$R\left[\bar{\psi}\left(\frac{\partial^{2}\hat{f}}{\partial\hat{S}_{i}\partial\hat{S}_{j}}\right)\psi_{L}\right] = 0 \quad \Rightarrow \quad R\left[\hat{f}\right] = +2$$

Quantity

 $egin{array}{c} heta_{L/R} \ \hat{\mathcal{S}} \ \hat{h} \end{array}$

Ŷ

 $U(1)_R$

 $egin{array}{c} \pm 1 \\ +1 \\ 0 \end{array}$

0

$$\underline{\epsilon}\hat{L}^{(1)}\hat{Q}^{(1)}\hat{D}^{c(1)} + \underline{\epsilon}\hat{L}^{(1)}\hat{t}^{(1)}\hat{E}^{c(1)} + \underline{\epsilon}\hat{L}^{(1)}\hat{H}^{(\theta)}_{u} \in \hat{f}^{(2)}_{\Delta L=1}$$

$$\underline{\hat{U}^{c(1)}}\hat{U}^{c(1)}\hat{D}^{c(1)} \in \hat{f}^{(2)}_{\Delta B=1}$$

A Continuous R Symmetry

• $U(1)_R$ symmetry reduces the parameter space:

$$\hat{f}^{(2)} = \mu \hat{H}_{u}^{(0)} \hat{H}_{d}^{(0)} + \mathbf{f}_{u} \epsilon_{ab} \hat{Q}^{(1)a} \hat{H}_{u}^{(0)a} \hat{U}^{c(1)} + \mathbf{f}_{d} \hat{Q}^{(1)} \hat{H}_{d}^{(0)} \hat{D}^{c(1)} + \mathbf{f}_{e} \hat{L}^{(1)} \cdot \hat{H}_{d}^{(0)} \hat{E}^{c(1)}$$

$$\mathcal{L}_{\text{soft}}^{(0)} = \left[\tilde{Q}_{i}^{\dagger(-1)} \mathbf{m}_{Q_{ij}}^{2} \tilde{Q}_{j}^{(1)} + \dots + m_{H_{u}}^{2} |H_{u}|^{2(0)} + \dots \right] \\ - \frac{1}{2} \left[\underline{M_{1}} \tilde{\lambda_{0}}^{(1)} \overline{\lambda_{0}}^{(1)} + \dots \right] + \left[\underline{(\mathbf{a}_{u})_{ij}} \tilde{Q}_{i}^{(1)} \underline{H_{u}}^{(0)} \tilde{u}_{Rj}^{\dagger}^{(1)} + \dots \right] \\ + \left[\underline{(\mathbf{c}_{u})_{ij}} \tilde{Q}_{i}^{(1)} \underline{H_{d}}^{*(0)} \tilde{u}_{Rj}^{\dagger(1)} + \dots \right] + \left[b \underline{H_{u}}^{(0)} \underline{H_{d}}^{(0)} + \text{ h.c} \right]$$

Problem: massless gauginos...

Rob Knegjens (ITF, Utrecht)

The MRSSM

- Solution: The Minimal R-symmetric Supersymmetric Standard Model [Kribs, Poppitz and Weiner, Phys. Rev. D78 (2008) 055010]
- Add chiral superfields with adjoint gauge representation

$$\hat{\Phi}_A \ni (\phi_A, \psi_{LA}, \mathcal{F}_A)$$

• The two Majorana spinors combine to give a Dirac spinor:

 $\tilde{g}_A \equiv \psi_{LA} + \lambda_{RA}$

Dirac mass is generated by breaking of a spurion field

$$\hat{Y} \to \dots - i\theta_L \langle D' \rangle + \dots$$

$$\left(\left. \hat{Y}^c \hat{W}_A \hat{\Phi}_A + \text{ h.c} \right) \right|_{\mathcal{F}\text{-term}} \in \mathcal{L}$$

$$\to - \langle D' \rangle \overline{\tilde{g}} \widetilde{g}$$

Rob Knegjens (ITF, Utrecht)

Squark Flavour Mixing

 $ilde{Q}_{i}^{\dagger}\mathbf{m}_{Qij}^{2} ilde{Q}_{j} \in \mathcal{L}_{\mathrm{soft}}$

- Squark flavour mixing gives contributions to meson mixing experiments
- ▶ Heavily suppressed in the MSSM: $\sqrt{\delta_{LL}\delta_{RR}} \le 9.6 \times 10^{-4}$ [Ciuchini *et al.*]

Rob Knegjens (ITF, Utrecht)

Supersymmetric Single Top Production

October 23, 2009 19 / 46

Squark Flavour Mixing

- In MRSSM gluino is a Dirac fermion, so the dominant mixing diagram is forbidden
- > The remaining box diagram has an additional factor

$$\left(rac{k}{m_{ ilde{g}}}
ight)^2 ~\sim ~ \left(rac{m_{ ilde{q}}}{m_{ ilde{g}}}
ight)^2$$

▶ Thus squark flavour mixing in MRSSM not phenomenologically suppressed when $m_{\tilde{g}} > m_{\tilde{q}}$

$$ilde{q}_{a} = \sum_{i} \left(U_{ ilde{q}}^{\dagger}
ight)_{ai} ilde{q}_{i}$$

Rob Knegjens (ITF, Utrecht)

Supersymmetric Single Top Production

October 23, 2009 20 / 46

Scalar Gluons (sgluons)

$$\hat{\Phi}_A \ni (\phi_A, \psi_{LA}, \mathcal{F}_A)$$

▶ In MRSSM QCD we have a colour octet complex scalar field:

$$\phi_{GA} \equiv \frac{\phi_{2A} + i\phi_{1A}}{\sqrt{2}}$$

▶ ϕ_2 and ϕ_1 are the physical mass eigenstates: sgluons

At tree level, sgluons couple to squarks and gluinos

Rob Knegjens (ITF, Utrecht)

Supersymmetric Single Top Production

October 23, 2009 21 / 46

Continuous R Symmetry The MRSSM

Gluons-Sgluon One Loop Coupling

Effective vertex:

$$\mathcal{M}_{ABC}^{\mu\nu} = 2 m_{\tilde{g}} g_{S}^{3} d_{ABC} \left[g^{\mu\nu} - \frac{2k_{1}^{\mu}k_{2}^{\nu}}{(k_{1} + k_{2})^{2}} \right] \\ \times \left\{ \sum_{\tilde{q}} m_{\tilde{q}L}^{2} C_{0}(k_{1}, k_{2}; m_{\tilde{q}L}, m_{\tilde{q}L}, m_{\tilde{q}L}) - (L \leftrightarrow R) \right\}$$

Rob Knegjens (ITF, Utrecht)

Continuous R Symmetry The MRSSM

Quarks-Sgluon One Loop Coupling

Effective vertex:

$$\mathcal{M}_{t}^{\phi_{2}} = \frac{ig_{S}^{3}}{8\pi^{2}} \frac{m_{\tilde{g}} m_{t}}{s - m_{t}^{2}} (t_{A})_{mn} \left\{ \bar{u}_{3m}(k_{1}) P_{L} v_{jn}(k_{2}) \right.$$
$$\left. \times \left(\sum_{\tilde{q}a} (U_{\tilde{q}L})_{3a} (U_{\tilde{q}L}^{\dagger})_{aj} f_{t}(s; m_{\tilde{q}aL}) \right) + (L \leftrightarrow R) \right\}$$

Rob Knegjens (ITF, Utrecht)

Numerical Methods

Numerical Methods

Rob Knegjens (ITF, Utrecht)

Supersymmetric Single Top Production

October 23, 2009 24 / 46

Multi-dimensional Integration

$$\hat{\sigma} = \frac{(2\pi)^4}{\mathcal{F}} \int \prod_{j=1}^n \frac{d^3 \mathbf{p}_j}{(2\pi)^3 2E_j} \, \delta^{(4)}(q - \sum_{j=1}^n p_j) \, \left| \overline{\mathcal{M}} \right|^2$$

- ▶ 3n 4 integration variables \Rightarrow numerical integration
- Convergence of Monte Carlo integration independent of dimension

Rob Knegjens (ITF, Utrecht)

Monte Carlo Integration

By the law of large numbers can integrate over a hypercube by picking random points:

$$I = \int d^d \mathbf{x} f(\mathbf{x}) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N f(\mathbf{x}_n)$$

• Large N gives an estimate E with variance: $E - I \propto \frac{1}{\sqrt{N}}$

Rob Knegjens (ITF, Utrecht)

Improving Convergence

- Use adaptive algorithm to bias the sampling to regions with greater variance.
- The adaptive VEGAS algorithm:
 - Splits domain into a grid. Each subspace has uniform probability density
 - Shifts grid lines towards regions of higher variance after each iteration

Our Monte Carlo Program

*[T. Hahn and M. Perez-Victoria, arXiv:hep-ph/9807565v1]

Rob Knegjens (ITF, Utrecht)

Breit-Wigner Factorization Implemented

- Dominant contribution when particle c close to mass-shell
- Arbitrary decay chains straightforward

$$d\sigma^{\rm tot} \simeq {\rm d}\sigma^{\rm prod} \cdot \left\{ \frac{1}{\pi} \frac{m_{\rm c} \Gamma}{(s_{\rm c} - m_{\rm c}^2)^2 + m_{\rm c}^2 \Gamma^2} \right\} \, {\rm d}{\rm s_{\rm c}} \cdot \frac{\sqrt{s_{\rm c} + {\rm p_{\rm c}}^2} \, {\rm d}\Gamma({\rm p_{\rm c}})}{m_{\rm c} \Gamma}$$

Validity Check

Compare with analytical solution for the process

$$q+ar{q}
ightarrow \widetilde{g}+\widetilde{g}$$

Method	$\hat{\sigma}$ [fb] (2 TeV)
Analytical	691.693
Our Monte Carlo	691.754 ± 0.069
${\sf Madgraph}/{\sf MadEvent}^\dagger$	693.610 ± 3.102

†[Alwall, Demin, Visscher, Frederix, Herquet, Maltoni, Plehn, Raindwater and Stelzer, JHEP0709 028 (2008)]

Rob Knegjens (ITF, Utrecht)

Supersymmetric Single Top Production

October 23, 2009 30 / 46

Phenomenology

Phenomenology

Rob Knegjens (ITF, Utrecht)

Supersymmetric Single Top Production

October 23, 2009 31 / 46

Strong Flavour Changing Interactions

- QCD sector of MRSSM has flavour changing interactions
 - Single top quark production possible
- Sgluon mediated: 2 diagrams

Non-sgluon mediated: 60 diagrams (FeynArts/FormCalc)

Rob Knegjens (ITF, Utrecht)

Supersymmetric Single Top Production

October 23, 2009 32 / 46

Detection of Single Top Production

- ▶ Top has large decay width, thus decays quickly: ${\sf Br}(t o W \ b) \sim 1$
- Most interesting decay of W boson is to leptons: Br $(W \rightarrow l^+ \nu_l) = 0.11$

 Detectors have a b-tagging efficiency of ~50%. Signals of interest are thus

• 2 *b*-jets +
$$I^+ + \not E_T$$

• b-jet + jet + I^+ + $\not E_T$

Rob Knegjens (ITF, Utrecht)

Background: Standard Model Single Top

Standard Model has flavour changing interactions in the electroweak sector:

$$\frac{\mathcal{B}}{\sqrt{2}}V_{tb}\overline{t}\gamma^{\mu}P_{L}bW_{\mu}+\text{ h.c}\in\mathcal{L}_{SM}$$

Irreducible background will be given by the s and t channels

Rob Knegjens (ITF, Utrecht)

MRSSM Parameter Space

Assume two mixed squark flavours for simplicity

$$U_{\tilde{u}L} = \begin{pmatrix} \cos\theta_L & 0 & \sin\theta_L \\ 0 & 1 & 0 \\ -\sin\theta_L & 0 & \cos\theta_L \end{pmatrix}$$

• Pick six points in parameter space:

Benchmark	m _ĝ	$m_{\tilde{u}L} = m_{\tilde{d}L}$	$m_{\tilde{q}R}/m_{\tilde{q}L}$	$\theta_L = \theta_R$
Point A	1000	{400, 400, 1000}	0.9	$\pi/4$
Point B	1000	{900, 900, 1500}	0.9	$\pi/4$
Point C	1000	{400, 400, 500}	0.9	$\pi/4$
Point D	2000	{400, 400, 1000}	0.9	$\pi/4$
Point E	500	{400, 400, 1000}	0.9	$\pi/4$
Point F	1000	{400, 400, 1000}	0.9	$\pi/3$

Sgluon Mediated Single Top

 Sgluon has very narrow decay width when squark/gluino decays kinematically forbidden

Can therefore use narrow width approximation in this region

$$\sigma(gg \to t\bar{q})\Big|_{s=M_{\phi}^2} = \frac{\pi}{M_{\phi}^2} \operatorname{Br}(\phi_2 \to gg) \operatorname{Br}(\phi_2 \to t\bar{q})$$

Rob Knegjens (ITF, Utrecht)

Sgluon Mediated Single Top

Cross section of s-channel sgluon mediated single top production:

 Ideal detector would give a single spiked bin on invariant mass distribution plots

Rob Knegjens (ITF, Utrecht)

Non-sgluon Mediated Single Top

► t + jet dominates t + b-jet:

	$\sigma_{\sf LO}(t+{\sf jet}) \; [{\sf pb}]$	$\sigma_{\sf LO}(t + {\sf b-jet}) \; [{\sf pb}]$
Point A	16.3 ± 0.2	0.449 ± 0.002
Point B	10.16 ± 0.05	0.282 ± 0.001
Point C	0.46 ± 0.03	0.0152 ± 0.0001
Point D	4.0 ± 0.3	0.115 ± 0.009
Point E	36.0 ± 0.3	0.991 ± 0.004
Point F	12.06 ± 0.05	0.336 ± 0.002
Standard Model	69.1 ± 0.2	3.39 ± 0.01

Standard Model gives sizable background

Rob Knegjens (ITF, Utrecht)

Non-sgluon Mediated Single Top

• t + jet: top quark is very forward

Rob Knegjens (ITF, Utrecht)

- Consider signal of non-sgluon mediated single top at the LHC
- ► Take as background irreducible Standard Model processes

Rob Knegjens (ITF, Utrecht)

•
$$b$$
-jet + jet + I^+ + $\not E_T$

Rob Knegjens (ITF, Utrecht)

► Place kinematic cuts:

- 1. $p_T(\text{jet}/b\text{-jet }1) \le 75$ GeV.
- ▶ 2. $|\eta(I^+)| \ge 0.5$ and $|\eta(b\text{-jet }2)| \ge 0.5$.
- ► Assume b-tagging efficiency of 50%. For integrated luminosity L:
 - 2 *b*-jets + $I^+ + \not E_T$:

$$S = (0.5)^2 \times \sigma (2b\text{-jets}) \times L$$

 $B = (0.5)^2 \times \sigma_{SM} (2b\text{-jets}) \times L$

• b-jet + jet + I^+ + F_T :

$$S = 0.5 \times \sigma(b\text{-jet}) \times L + 2 \times (0.5)^2 \times \sigma(2b\text{-jets}) \times L,$$

 $B = 0.5 \times \sigma_{SM}(b\text{-jet}) \times L + 2 \times (0.5)^2 \times \sigma_{SM}(2b\text{-jets}) \times L.$

 \blacktriangleright For signal discovery, need $S/B\gtrsim 10\%$ and statistical significance $S/\sqrt{B}\geq 5$

Rob Knegjens (ITF, Utrecht)

► 2 *b*-jets + l^+ + $\not{E_T}$: luminosity of 10 fb⁻¹

		No Cuts [†]	Cut 1	Cuts 1 & 2
Point A	S/B	0.05	0.10	0.14
	S/\sqrt{B}	1.8	2.4	2.5
Point B	S/B	0.03	0.06	0.09
	S/\sqrt{B}	1.1	1.5	1.6
Point C	S/B	0.00	0.00	0.00
	S/\sqrt{B}			
Point D	S/B	0.01	0.03	0.04
	S/\sqrt{B}	0.5	0.7	0.8
Point E	S/B	0.11	0.21	0.31
	S/\sqrt{B}	4.0	5.3	5.6
Point F	S/B	0.04	0.07	0.10
	S/\sqrt{B}	1.3	1.8	1.9

Rob Knegjens (ITF, Utrecht)

► *b*-jet + jet + l^+ + $\not{E_T}$: luminosity of 10 fb⁻¹

		No Cuts [†]	Cut 1	Cuts 1 & 2
Point A	S/B	0.09	0.16	0.23
	S/\sqrt{B}	22.2	27.7	28.3
Point B	S/B	0.06	0.10	0.15
	S/\sqrt{B}	14.2	17.8	18.3
Point C	S/B	0.00	0.01	0.01
	S/\sqrt{B}			
Point D	S/B	0.03	0.05	0.07
	S/\sqrt{B}	6.6	8.3	8.6
Point E	S/B	0.20	0.35	0.49
	S/\sqrt{B}	48.6	60.5	61.5
Point F	S/B	0.07	0.12	0.17
	S/\sqrt{B}	16.9	21.1	21.8

Rob Knegjens (ITF, Utrecht)

Signals at the Tevatron

- ▶ Tevatron recently detected single top production at D0 and CDF
- Can Tevatron 2-jets + $I^+ + \not{E_T}$ data rule out MRSSM? ...No

		CDF (3.2 fb^{-1})	D0 (2.3 fb^{-1})
Tevatron data		3315	2579
Standard Model	В	3377 ± 505	2615 ± 192
Point A	S/B	0.01	0.01
	S/\sqrt{B}	0.6	0.5
Point B	S/B	0.01	0.01
	S/\sqrt{B}	0.4	0.3
Point E	S/B	0.02	0.02
	S/\sqrt{B}	1.4	1.1
Point F	S/B	0.01	0.01
	S/\sqrt{B}	0.5	0.4

Rob Knegjens (ITF, Utrecht)

Summary

- Derived Feynman rules and mass spectrum for QCD sector of the MRSSM
- Developed a Monte Carlo program to calculate cross sections
- Studied single top phenomenology of the MRSSM
- Outlook:
 - Check parameter points w.r.t meson mixing: $m_{\tilde{g}} > m_{\tilde{q}}$
 - Add reducible backgrounds
 - Add hadronization effects